ID | Technique | Tactic |
---|---|---|
T1578.005 | Modify Cloud Compute Configurations | Defense Evasion |
Detection: Cloud Security Groups Modifications by User
Description
The following analytic identifies unusual modifications to security groups in your cloud environment by users, focusing on actions such as modifications, deletions, or creations over 30-minute intervals. It leverages cloud infrastructure logs and calculates the standard deviation for each user, using the 3-sigma rule to detect anomalies. This activity is significant as it may indicate a compromised account or insider threat. If confirmed malicious, attackers could alter security group configurations, potentially exposing sensitive resources or disrupting services.
Search
1
2| tstats dc(All_Changes.object) as unique_security_groups values(All_Changes.src) as src values(All_Changes.user_type) as user_type values(All_Changes.object_category) as object_category values(All_Changes.object) as objects values(All_Changes.action) as action values(All_Changes.user_agent) as user_agent values(All_Changes.command) as command from datamodel=Change WHERE All_Changes.object_category = "security_group" (All_Changes.action = modified OR All_Changes.action = deleted OR All_Changes.action = created) by All_Changes.user _time span=30m
3| `drop_dm_object_name("All_Changes")`
4| eventstats avg(unique_security_groups) as avg_changes , stdev(unique_security_groups) as std_changes by user
5| eval upperBound=(avg_changes+std_changes*3)
6| eval isOutlier=if(unique_security_groups > 2 and unique_security_groups >= upperBound, 1, 0)
7| where isOutlier=1
8| `cloud_security_groups_modifications_by_user_filter`
Data Source
Name | Platform | Sourcetype | Source | Supported App |
---|---|---|---|---|
AWS CloudTrail | AWS | 'aws:cloudtrail' |
'aws_cloudtrail' |
N/A |
Macros Used
Name | Value |
---|
| cloud_security_groups_modifications_by_user_filter | search *
|
cloud_security_groups_modifications_by_user_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Risk Event | True |
Implementation
This search requries the Cloud infrastructure logs such as AWS Cloudtrail, GCP Pubsub Message logs, Azure Audit logs to be ingested into an accelerated Change datamodel. It is also recommended that users can try different combinations of the bucket
span time and outlier conditions to better suit with their environment.
Known False Positives
It is possible that legitimate user/admin may modify a number of security groups
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
Unsual number cloud security group modifications detected by user - $user$ | 35 | 70 | 50 |
References
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | ✅ Passing | N/A | N/A | N/A |
Unit | ✅ Passing | Dataset | aws_cloudtrail |
aws:cloudtrail |
Integration | ✅ Passing | Dataset | aws_cloudtrail |
aws:cloudtrail |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 2