Detection: MSBuild Suspicious Spawned By Script Process

Description

The following analytic detects the suspicious spawning of MSBuild.exe by Windows Script Host processes (cscript.exe or wscript.exe). This behavior is often associated with malware or adversaries executing malicious MSBuild processes via scripts on compromised hosts. The detection leverages Endpoint Detection and Response (EDR) telemetry, focusing on process creation events where MSBuild is a child of script hosts. This activity is significant as it may indicate an attempt to execute malicious code. If confirmed malicious, it could lead to unauthorized code execution, potentially compromising the host and allowing further malicious activities.

1
2| tstats `security_content_summariesonly` count values(Processes.process_name) as process_name values(Processes.process) as process min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where Processes.parent_process_name IN ("wscript.exe", "cscript.exe") AND `process_msbuild` by Processes.dest Processes.parent_process Processes.parent_process_name Processes.process_name Processes.original_file_name Processes.user 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `msbuild_suspicious_spawned_by_script_process_filter`

Data Source

Name Platform Sourcetype Source Supported App
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike' N/A

Macros Used

Name Value
process_msbuild (Processes.process_name=msbuild.exe OR Processes.original_file_name=MSBuild.exe)
msbuild_suspicious_spawned_by_script_process_filter search *
msbuild_suspicious_spawned_by_script_process_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1127.001 MSBuild Defense Evasion
T1127 Trusted Developer Utilities Proxy Execution Defense Evasion
KillChainPhase.EXPLOITAITON
NistCategory.DE_CM
Cis18Value.CIS_10

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Notable Yes
Rule Title %name%
Rule Description %description%
Notable Event Fields user, dest
Creates Risk Event True
This configuration file applies to all detections of type TTP. These detections will use Risk Based Alerting and generate Notable Events.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

False positives should be limited as developers do not spawn MSBuild via a WSH.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
Msbuild.exe process spawned by $parent_process_name$ on $dest$ executed by $user$ 49 70 70
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 2