ID | Technique | Tactic |
---|---|---|
T1546.011 | Application Shimming | Persistence |
T1546 | Event Triggered Execution | Privilege Escalation |
Detection: Shim Database Installation With Suspicious Parameters
Description
The following analytic detects the execution of sdbinst.exe with parameters indicative of silently creating a shim database. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process names, parent processes, and command-line arguments. This activity is significant because shim databases can be used to intercept and manipulate API calls, potentially allowing attackers to bypass security controls or achieve persistence. If confirmed malicious, this could enable unauthorized code execution, privilege escalation, or persistent access to the compromised system.
Search
1
2| tstats `security_content_summariesonly` values(Processes.process) as process min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where Processes.process_name = sdbinst.exe by Processes.process_name Processes.parent_process_name Processes.dest Processes.user
3| `drop_dm_object_name(Processes)`
4| `security_content_ctime(firstTime)`
5| `security_content_ctime(lastTime)`
6| `shim_database_installation_with_suspicious_parameters_filter`
Data Source
Name | Platform | Sourcetype | Source | Supported App |
---|---|---|---|---|
CrowdStrike ProcessRollup2 | N/A | 'crowdstrike:events:sensor' |
'crowdstrike' |
N/A |
Macros Used
Name | Value |
---|---|
security_content_ctime | convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$) |
shim_database_installation_with_suspicious_parameters_filter | search * |
shim_database_installation_with_suspicious_parameters_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Notable | Yes |
Rule Title | %name% |
Rule Description | %description% |
Notable Event Fields | user, dest |
Creates Risk Event | True |
Implementation
The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes
node of the Endpoint
data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.
Known False Positives
None identified
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
A process $process_name$ that possible create a shim db silently in host $dest$ | 63 | 70 | 90 |
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | ✅ Passing | N/A | N/A | N/A |
Unit | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
xmlwineventlog |
Integration | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
xmlwineventlog |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 5