Detection: Linux Auditd Find Credentials From Password Stores

Description

The following analytic detects suspicious attempts to find credentials stored in password stores, indicating a potential attacker's effort to access sensitive login information. Password stores are critical repositories that contain valuable credentials, and unauthorized access to them can lead to significant security breaches. By monitoring for unusual or unauthorized activities related to password store access, this analytic helps identify potential credential theft attempts, allowing security teams to respond promptly and prevent unauthorized access to critical systems and data.

1`linux_auditd` `linux_auditd_normalized_execve_process` 
2| rename host as dest 
3| where  (LIKE (process_exec, "%find%") OR LIKE (process_exec, "%grep%")) AND (LIKE (process_exec, "%password%") OR LIKE (process_exec, "%pass %") OR LIKE (process_exec, "%credential%")OR LIKE (process_exec, "%creds%")) 
4| stats count min(_time) as firstTime max(_time) as lastTime by argc process_exec dest 
5| `security_content_ctime(firstTime)` 
6| `security_content_ctime(lastTime)`
7| `linux_auditd_find_credentials_from_password_stores_filter`

Data Source

Name Platform Sourcetype Source Supported App
Linux Auditd Execve Linux icon Linux 'linux:audit' '/var/log/audit/audit.log' N/A

Macros Used

Name Value
linux_auditd sourcetype="linux:audit"
linux_auditd_find_credentials_from_password_stores_filter search *
linux_auditd_find_credentials_from_password_stores_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1555.005 Password Managers Credential Access
T1555 Credentials from Password Stores Credential Access
KillChainPhase.EXPLOITAITON
NistCategory.DE_CM
Cis18Value.CIS_10
Fox Kitten
LAPSUS$
Threat Group-3390
APT33
APT39
Evilnum
FIN6
HEXANE
Leafminer
Malteiro
MuddyWater
OilRig
Stealth Falcon
Volt Typhoon

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Notable Yes
Rule Title %name%
Rule Description %description%
Notable Event Fields user, dest
Creates Risk Event True
This configuration file applies to all detections of type TTP. These detections will use Risk Based Alerting and generate Notable Events.

Implementation

To implement this detection, the process begins by ingesting auditd data, that consist SYSCALL, TYPE, EXECVE and PROCTITLE events, which captures command-line executions and process details on Unix/Linux systems. These logs should be ingested and processed using Splunk Add-on for Unix and Linux (https://splunkbase.splunk.com/app/833), which is essential for correctly parsing and categorizing the data. The next step involves normalizing the field names to match the field names set by the Splunk Common Information Model (CIM) to ensure consistency across different data sources and enhance the efficiency of data modeling. This approach enables effective monitoring and detection of linux endpoints where auditd is deployed

Known False Positives

Administrator or network operator can use this application for automation purposes. Please update the filter macros to remove false positives.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
A [$process_exec$] event occurred on host - [$dest$] to find credentials stored in password managers. 64 80 80
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset /var/log/audit/audit.log linux:audit
Integration ✅ Passing Dataset /var/log/audit/audit.log linux:audit

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 1