ID | Technique | Tactic |
---|---|---|
T1548 | Abuse Elevation Control Mechanism | Defense Evasion |
Detection: Linux Persistence and Privilege Escalation Risk Behavior
Description
The following analytic identifies potential Linux persistence and privilege escalation activities. It leverages risk scores and event counts from various Linux-related data sources, focusing on tactics associated with persistence and privilege escalation. This activity is significant for a SOC because it highlights behaviors that could allow an attacker to maintain access or gain elevated privileges on a Linux system. If confirmed malicious, this activity could enable an attacker to execute code with higher privileges, persist in the environment, and potentially access sensitive information, posing a severe security risk.
Search
1
2| tstats `security_content_summariesonly` min(_time) as firstTime max(_time) as lastTime sum(All_Risk.calculated_risk_score) as risk_score, count(All_Risk.calculated_risk_score) as risk_event_count, values(All_Risk.annotations.mitre_attack.mitre_tactic_id) as annotations.mitre_attack.mitre_tactic_id, dc(All_Risk.annotations.mitre_attack.mitre_tactic_id) as mitre_tactic_id_count, values(All_Risk.annotations.mitre_attack.mitre_technique_id) as annotations.mitre_attack.mitre_technique_id, dc(All_Risk.annotations.mitre_attack.mitre_technique_id) as mitre_technique_id_count, values(All_Risk.tag) as tag, values(source) as source, dc(source) as source_count from datamodel=Risk.All_Risk where (All_Risk.analyticstories IN ("Linux Privilege Escalation", "Linux Persistence Techniques") OR source = "*Linux*") All_Risk.annotations.mitre_attack.mitre_tactic IN ("persistence", "privilege-escalation") All_Risk.risk_object_type="system" by All_Risk.risk_object All_Risk.risk_object_type All_Risk.annotations.mitre_attack.mitre_tactic
3| `drop_dm_object_name(All_Risk)`
4| `security_content_ctime(firstTime)`
5| `security_content_ctime(lastTime)`
6| where source_count >= 4
7| `linux_persistence_and_privilege_escalation_risk_behavior_filter`
Data Source
Name | Platform | Sourcetype | Source | Supported App |
---|---|---|---|---|
N/A | N/A | N/A | N/A | N/A |
Macros Used
Name | Value |
---|---|
security_content_ctime | convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$) |
linux_persistence_and_privilege_escalation_risk_behavior_filter | search * |
linux_persistence_and_privilege_escalation_risk_behavior_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Notable | Yes |
Rule Title | %name% |
Rule Description | %description% |
Notable Event Fields | user, dest |
Creates Risk Event | False |
Implementation
Ensure Linux anomaly and TTP analytics are enabled. TTP may be set to Notables for point detections, anomaly should not be notables but risk generators. The correlation relies on more than x amount of distict detection names generated before generating a notable. Modify the value as needed. Default value is set to 4. This value may need to be increased based on activity in your environment.
Known False Positives
False positives will be present based on many factors. Tune the correlation as needed to reduce too many triggers.
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
Privilege escalation and persistence behaviors have been identified on $risk_object$. | 56 | 70 | 80 |
References
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | ✅ Passing | N/A | N/A | N/A |
Unit | ✅ Passing | Dataset | linuxrisk |
stash |
Integration | ✅ Passing | Dataset | linuxrisk |
stash |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 4