Detection: CSC Net On The Fly Compilation

Description

The following analytic detects the use of the .NET compiler csc.exe for on-the-fly compilation of potentially malicious .NET code. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on specific command-line patterns associated with csc.exe. This activity is significant because adversaries and malware often use this technique to evade detection by compiling malicious code at runtime. If confirmed malicious, this could allow attackers to execute arbitrary code, potentially leading to system compromise, data exfiltration, or further lateral movement within the network.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where `process_csc` Processes.process = "*/noconfig*" Processes.process = "*/fullpaths*" Processes.process = "*@*" by Processes.dest Processes.user Processes.parent_process_name Processes.parent_process Processes.process_name Processes.process Processes.process_id Processes.parent_process_id 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `csc_net_on_the_fly_compilation_filter`

Data Source

Name Platform Sourcetype Source Supported App
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike' N/A

Macros Used

Name Value
process_csc (Processes.process_name=csc.exe OR Processes.original_file_name=csc.exe)
csc_net_on_the_fly_compilation_filter search *
csc_net_on_the_fly_compilation_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1027.004 Compile After Delivery Defense Evasion
T1027 Obfuscated Files or Information Defense Evasion
KillChainPhase.EXPLOITAITON
NistCategory.DE_AE
Cis18Value.CIS_10
Gamaredon Group
MuddyWater
Rocke
APT-C-36
APT3
APT37
APT41
BackdoorDiplomacy
BlackOasis
Earth Lusca
Ember Bear
GALLIUM
Gallmaker
Gamaredon Group
Ke3chang
Kimsuky
Mustang Panda
Rocke
Sandworm Team
Windshift

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Risk Event False
This configuration file applies to all detections of type hunting.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

A network operator or systems administrator may utilize an automated powershell script taht execute .net code that may generate false positive. filter is needed.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
csc.exe with commandline $process$ to compile .net code on $dest$ by $user$ 25 50 50
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 2