Detection: Suspicious microsoft workflow compiler rename

Description

The following analytic detects the renaming of microsoft.workflow.compiler.exe, a rarely used executable typically located in C:\Windows\Microsoft.NET\Framework64\v4.0.30319. This detection leverages Endpoint Detection and Response (EDR) data, focusing on process names and original file names. This activity is significant because renaming this executable can indicate an attempt to evade security controls. If confirmed malicious, an attacker could use this renamed executable to execute arbitrary code, potentially leading to privilege escalation or persistent access within the environment.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where Processes.process_name!=microsoft.workflow.compiler.exe AND Processes.original_file_name=Microsoft.Workflow.Compiler.exe by Processes.dest Processes.user Processes.parent_process_name Processes.process_name Processes.process Processes.process_id Processes.parent_process_id Processes.original_file_name 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `suspicious_microsoft_workflow_compiler_rename_filter`

Data Source

Name Platform Sourcetype Source Supported App
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike' N/A

Macros Used

Name Value
security_content_ctime convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$)
suspicious_microsoft_workflow_compiler_rename_filter search *
suspicious_microsoft_workflow_compiler_rename_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1036 Masquerading Defense Evasion
T1127 Trusted Developer Utilities Proxy Execution Defense Evasion
T1036.003 Rename System Utilities Defense Evasion
KillChainPhase.EXPLOITAITON
NistCategory.DE_AE
Cis18Value.CIS_10
APT28
APT32
BRONZE BUTLER
Dragonfly
FIN13
LazyScripter
Nomadic Octopus
OilRig
PLATINUM
Sandworm Team
TA551
TeamTNT
Windshift
ZIRCONIUM
menuPass
APT32
GALLIUM
Lazarus Group
menuPass

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Risk Event False
This configuration file applies to all detections of type hunting.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

Although unlikely, some legitimate applications may use a moved copy of microsoft.workflow.compiler.exe, triggering a false positive.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
Suspicious renamed microsoft.workflow.compiler.exe binary ran on $dest$ by $user$ 63 70 90
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational xmlwineventlog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 6