ID | Technique | Tactic |
---|---|---|
T1082 | System Information Discovery | Discovery |
Detection: System Information Discovery Detection
Description
The following analytic identifies system information discovery techniques, such as the execution of commands like wmic qfe
, systeminfo
, and hostname
. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process execution logs. This activity is significant because attackers often use these commands to gather system configuration details, which can aid in further exploitation. If confirmed malicious, this behavior could allow attackers to tailor their attacks based on the discovered system information, potentially leading to privilege escalation, persistence, or data exfiltration.
Search
1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where (Processes.process="*wmic* qfe*" OR Processes.process=*systeminfo* OR Processes.process=*hostname*) by Processes.user Processes.process_name Processes.process Processes.dest Processes.parent_process_name
3| `drop_dm_object_name(Processes)`
4| eventstats dc(process) as dc_processes_by_dest by dest
5| where dc_processes_by_dest > 2
6| stats values(process) as process min(firstTime) as firstTime max(lastTime) as lastTime by user, dest parent_process_name
7| `security_content_ctime(firstTime)`
8| `security_content_ctime(lastTime)`
9| `system_information_discovery_detection_filter`
Data Source
Name | Platform | Sourcetype | Source | Supported App |
---|---|---|---|---|
CrowdStrike ProcessRollup2 | N/A | 'crowdstrike:events:sensor' |
'crowdstrike' |
N/A |
Macros Used
Name | Value |
---|---|
security_content_ctime | convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$) |
system_information_discovery_detection_filter | search * |
system_information_discovery_detection_filter
is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.
Annotations
Default Configuration
This detection is configured by default in Splunk Enterprise Security to run with the following settings:
Setting | Value |
---|---|
Disabled | true |
Cron Schedule | 0 * * * * |
Earliest Time | -70m@m |
Latest Time | -10m@m |
Schedule Window | auto |
Creates Notable | Yes |
Rule Title | %name% |
Rule Description | %description% |
Notable Event Fields | user, dest |
Creates Risk Event | True |
Implementation
The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes
node of the Endpoint
data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.
Known False Positives
Administrators debugging servers
Associated Analytic Story
Risk Based Analytics (RBA)
Risk Message | Risk Score | Impact | Confidence |
---|---|---|---|
Potential system information discovery behavior on $dest$ by $user$ | 15 | 30 | 50 |
References
Detection Testing
Test Type | Status | Dataset | Source | Sourcetype |
---|---|---|---|---|
Validation | ✅ Passing | N/A | N/A | N/A |
Unit | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
xmlwineventlog |
Integration | ✅ Passing | Dataset | XmlWinEventLog:Microsoft-Windows-Sysmon/Operational |
xmlwineventlog |
Replay any dataset to Splunk Enterprise by using our replay.py
tool or the UI.
Alternatively you can replay a dataset into a Splunk Attack Range
Source: GitHub | Version: 4