Detection: Rundll32 Shimcache Flush

Description

The following analytic detects the execution of a suspicious rundll32 command line used to clear the shim cache. It leverages data from Endpoint Detection and Response (EDR) agents, focusing on process execution logs and command-line arguments. This activity is significant because clearing the shim cache is an anti-forensic technique aimed at evading detection and removing forensic artifacts. If confirmed malicious, this action could hinder incident response efforts, allowing an attacker to cover their tracks and maintain persistence on the compromised machine.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where  `process_rundll32` AND Processes.process = "*apphelp.dll,ShimFlushCache*" by Processes.dest Processes.user Processes.parent_process_name Processes.process_name Processes.process Processes.process_id Processes.parent_process_id Processes.original_file_name 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `rundll32_shimcache_flush_filter`
spl

Data Source

Name Platform Sourcetype Source
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike'
Sysmon EventID 1 Windows icon Windows 'xmlwineventlog' 'XmlWinEventLog:Microsoft-Windows-Sysmon/Operational'
Windows Event Log Security 4688 Windows icon Windows 'xmlwineventlog' 'XmlWinEventLog:Security'

Macros Used

Name Value
process_rundll32 (Processes.process_name=rundll32.exe OR Processes.original_file_name=RUNDLL32.EXE)
rundll32_shimcache_flush_filter search *
rundll32_shimcache_flush_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1112 Modify Registry Defense Evasion
KillChainPhase.EXPLOITAITON
NistCategory.DE_CM
Cis18Value.CIS_10
APT19
APT32
APT38
APT41
Aquatic Panda
Blue Mockingbird
Dragonfly
Earth Lusca
Ember Bear
FIN8
Gamaredon Group
Gorgon Group
Indrik Spider
Kimsuky
LuminousMoth
Magic Hound
Patchwork
Saint Bear
Silence
TA505
Threat Group-3390
Turla
Volt Typhoon
Wizard Spider

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Notable Yes
Rule Title %name%
Rule Description %description%
Notable Event Fields user, dest
Creates Risk Event True
This configuration file applies to all detections of type TTP. These detections will use Risk Based Alerting and generate Notable Events.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

unknown

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
rundll32 process execute $process$ to clear shim cache in $dest$ 80 80 100
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational XmlWinEventLog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational XmlWinEventLog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 4