Try in Splunk Security Cloud

Description

The following correlation will identify activity related to Windows Exchange being actively exploited by adversaries related to ProxyShell or ProxyNotShell. In addition, the analytic correlates post-exploitation Cobalt Strike analytic story. Common post-exploitation behavior has been seen in the wild includes adversaries running nltest, Cobalt Strike, Mimikatz and adding a new user. The correlation specifically looks for 5 distict analyticstories to trigger, modify or tune as needed for your organization. 5 analytic stories is an arbitrary number but was chosen to reduce the amount of noise but also require the 3 analytic stories to fire. Adversaries will exploit the vulnerable Exchange server, abuse SSRF, drop a web shell, utilize the PowerShell Exchange modules and begin post-exploitation.

  • Type: Correlation
  • Product: Splunk Enterprise, Splunk Enterprise Security, Splunk Cloud
  • Datamodel: Risk
  • Last Updated: 2022-10-03
  • Author: Michael Haag, Splunk
  • ID: c32fab32-6aaf-492d-bfaf-acbed8e50cdf

Annotations

ATT&CK

ATT&CK

ID Technique Tactic
T1190 Exploit Public-Facing Application Initial Access
Kill Chain Phase
  • Exploitation
NIST
  • DE.CM
CIS20
  • CIS 3
  • CIS 5
  • CIS 16
CVE
1
2
3
4
5
6
7
| tstats `security_content_summariesonly` min(_time) as firstTime max(_time) as lastTime sum(All_Risk.calculated_risk_score) as risk_score, count(All_Risk.calculated_risk_score) as risk_event_count, values(All_Risk.annotations.mitre_attack.mitre_tactic_id) as annotations.mitre_attack.mitre_tactic_id, dc(All_Risk.annotations.mitre_attack.mitre_tactic_id) as mitre_tactic_id_count, values(All_Risk.analyticstories) as analyticstories values(All_Risk.annotations.mitre_attack.mitre_technique_id) as annotations.mitre_attack.mitre_technique_id, dc(All_Risk.annotations.mitre_attack.mitre_technique_id) as mitre_technique_id_count, values(All_Risk.tag) as tag, values(source) as source, dc(source) as source_count dc(All_Risk.analyticstories) as dc_analyticstories from datamodel=Risk.All_Risk where All_Risk.analyticstories IN ("ProxyNotShell","ProxyShell", "Cobalt Strike")   All_Risk.risk_object_type="system" by _time span=1h All_Risk.risk_object All_Risk.risk_object_type 
| `drop_dm_object_name(All_Risk)` 
| `security_content_ctime(firstTime)` 
| `security_content_ctime(lastTime)` 
| where dc_analyticstories >= 5 
| `proxyshell_proxynotshell_behavior_detected_filter`

Macros

The SPL above uses the following Macros:

:information_source: proxyshell_proxynotshell_behavior_detected_filter is a empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Required fields

List of fields required to use this analytic.

  • All_Risk.analyticstories
  • All_Risk.risk_object_type
  • All_Risk.risk_object
  • All_Risk.annotations.mitre_attack.mitre_tactic
  • source

How To Implement

To implement this correlation, you will need to enable ProxyShell, ProxyNotShell and Cobalt Strike analytic stories (the anaytics themselves) and ensure proper data is being collected for Web and Endpoint datamodels. Run the correlation rule seperately to validate it is not triggering too much or generating incorrectly. Validate by running ProxyShell POC code and Cobalt Strike behavior.

Known False Positives

False positives will be limited, however tune or modify the query as needed.

Associated Analytic Story

RBA

Risk Score Impact Confidence Message
81.0 90 90 ProxyShell or ProxyNotShell activity has been identified on $risk_object$.

:information_source: The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

Reference

Test Dataset

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range

source | version: 1