Detection: Windows DiskCryptor Usage

Description

The following analytic detects the execution of DiskCryptor, identified by the process names "dcrypt.exe" or "dcinst.exe". This detection leverages data from Endpoint Detection and Response (EDR) agents, focusing on process names and original file names. DiskCryptor is significant because adversaries use it to manually encrypt disks during an operation, potentially leading to data inaccessibility. If confirmed malicious, this activity could result in complete disk encryption, causing data loss and operational disruption. Immediate investigation is required to mitigate potential ransomware attacks.

1
2| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes where (Processes.process_name="dcrypt.exe" OR Processes.original_file_name=dcinst.exe) by Processes.dest Processes.user Processes.parent_process_name Processes.process_name Processes.original_file_name Processes.process Processes.process_id Processes.parent_process_id 
3| `drop_dm_object_name(Processes)` 
4| `security_content_ctime(firstTime)` 
5| `security_content_ctime(lastTime)` 
6| `windows_diskcryptor_usage_filter`

Data Source

Name Platform Sourcetype Source
CrowdStrike ProcessRollup2 N/A 'crowdstrike:events:sensor' 'crowdstrike'
Sysmon EventID 1 Windows icon Windows 'xmlwineventlog' 'XmlWinEventLog:Microsoft-Windows-Sysmon/Operational'
Windows Event Log Security 4688 Windows icon Windows 'xmlwineventlog' 'XmlWinEventLog:Security'

Macros Used

Name Value
security_content_ctime convert timeformat="%Y-%m-%dT%H:%M:%S" ctime($field$)
windows_diskcryptor_usage_filter search *
windows_diskcryptor_usage_filter is an empty macro by default. It allows the user to filter out any results (false positives) without editing the SPL.

Annotations

- MITRE ATT&CK
+ Kill Chain Phases
+ NIST
+ CIS
- Threat Actors
ID Technique Tactic
T1486 Data Encrypted for Impact Impact
KillChainPhase.ACTIONS_ON_OBJECTIVES
NistCategory.DE_AE
Cis18Value.CIS_10
APT38
APT41
Akira
FIN7
FIN8
INC Ransom
Indrik Spider
Magic Hound
Moonstone Sleet
Sandworm Team
Scattered Spider
TA505

Default Configuration

This detection is configured by default in Splunk Enterprise Security to run with the following settings:

Setting Value
Disabled true
Cron Schedule 0 * * * *
Earliest Time -70m@m
Latest Time -10m@m
Schedule Window auto
Creates Risk Event False
This configuration file applies to all detections of type hunting.

Implementation

The detection is based on data that originates from Endpoint Detection and Response (EDR) agents. These agents are designed to provide security-related telemetry from the endpoints where the agent is installed. To implement this search, you must ingest logs that contain the process GUID, process name, and parent process. Additionally, you must ingest complete command-line executions. These logs must be processed using the appropriate Splunk Technology Add-ons that are specific to the EDR product. The logs must also be mapped to the Processes node of the Endpoint data model. Use the Splunk Common Information Model (CIM) to normalize the field names and speed up the data modeling process.

Known False Positives

It is possible false positives may be present based on the internal name dcinst.exe, filter as needed. It may be worthy to alert on the service name.

Associated Analytic Story

Risk Based Analytics (RBA)

Risk Message Risk Score Impact Confidence
An instance of $parent_process_name$ spawning $process_name$ was identified on endpoint $dest$ by user $user$ attempting to encrypt disks. 35 70 50
The Risk Score is calculated by the following formula: Risk Score = (Impact * Confidence/100). Initial Confidence and Impact is set by the analytic author.

References

Detection Testing

Test Type Status Dataset Source Sourcetype
Validation Passing N/A N/A N/A
Unit Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational XmlWinEventLog
Integration ✅ Passing Dataset XmlWinEventLog:Microsoft-Windows-Sysmon/Operational XmlWinEventLog

Replay any dataset to Splunk Enterprise by using our replay.py tool or the UI. Alternatively you can replay a dataset into a Splunk Attack Range


Source: GitHub | Version: 4